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Recap

I N-body simulations are our only tool to understand deeply
non-linear structure formation

I In the very early universe, evolution of perturbations can be
calculated exactly

I After CMB in the matter domination, linear evolution is very
easy: each mode grows independently:

ρ(x) = ρ̄(1 + δ(x)) (1)

δ(x, z) = G (z)δ(x) (2)

δk(k, z) = G (z)δk(k) (3)

P(z , k) = G (z)2 〈δkδ∗k〉 (4)



Running simulations

I You form initial conditions by picking a sufficiently high
redhift and:

I Loop over k-modes
I For each k- mode pick a Gaussian random complex number

with variance P(k) (and random phase)

I This gives you a realization of the field at given redshift

I Move particles appropriately and give them appropriate linear
velocities

I Start a full integration of the system:
I Large scale remain linear and grow according to G (z)
I Small scales evolve into fully non-linear structure





Phase rotation

We can transform any Gaussian initial conditions of an N-body
simulation into an equally likely initial conditions by transforming
like

δ1(k)→ Aδ1 = δ1A(k), (5)

If

AA∗ = 1, (6)

A(k) = A∗(−k). (7)

the rotated initial conditions are an equally likely realization of the
same universe.
Two special cases:

I A = ±1, a constant

I A = e ikr, a translation



Inverse simulations

A trivial case A = −1. We have

δ → −δ (8)

(both in real and Fourier space)
You get a pair of initial conditions, but

I Overdensities in correspond to underdensities in the other
(and vice versa)

I Halos in one will correspond to voids in the other (and vice
versa)

I Large scales are expected to evolve the same (up to a minus
sign).

I Small scales will “decorrelate”



We run a pair

I w Pontzen (UCL)

I 200 Mpc, 5123 particles, WMAP5 cosmology

I Run standard and inverse
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Perturbation theory
There are many perturbation theory approaches. In SPT

δ(k) =
∞∑
i=1

aiδi (k), (9)

where aδn term is a convolution of n initial fields δ1 with a relevant
perturbation theory kernel and where translational invariance
reduces the dimensionality of the integral to n − 1:

δn(k) =

∫∫∫
Fn(k, k′, k′′ . . .)d3k′d3k′′d3k′′′ . . . d3k

′(n−1)timesδ1(k′)δ(k′′) . . . δ1(k−k′−k′′ . . .).
(10)

It is immediately clear that for the inverse simulations, the orders
in the evolved field are the same in magnitude, but that odd ones
flip the sign:

δi,j = (−1)jδj (11)



Perturbation theory

The standard auto-power spectrum is given by

P(k) = 〈δ(k)δ∗(k)〉 = P11(k) + (P13(k) + P22(k)) + . . . (12)

where P11 is the linear power spectrum and at second order we get
two contributions P22 = 〈δ2(k)δ∗2(k)〉 and P13 = 2 〈δ1(k)δ∗3(k)〉.
The cross-power spectrum between the standard and inverse field
is the same, but the some terms acquire negative sign:

PX (k) = 〈δ(k)δ∗(k)〉 = −P11(k)+(−P13(k) + P22(k))+ . . . (13)
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Fitting supression

We fitted Px(k)/Pl(k) with the following function fomr:

Px(k)

PA(k)
= e

−
(

k
kNL

)α

(14)

We see that this simple formula is an excellent fit down to 6th
snapshot corresponding to redshift of z ∼ 2. In fact, the fitted α is
equal to 2 to 4 significant figures at z = 9, is around 2.2 at
redshift of z = 2 and raises to ∼ 3 at z = 0.
Cleary a deeper reason for Gaussian suppression. Argument why
expansion parameter should be small (k/kNL) rather than δ.



Conclusions

I Currently running simulations where just k < k? modes are
flipped: can test the spreading of information in modes

I Excellent tool for void studies – identify halos in inverse, look
where those particle IDs end up in standard

I Very good tool for testing various perturbation schemes, e.g.
Effective Field Theory


